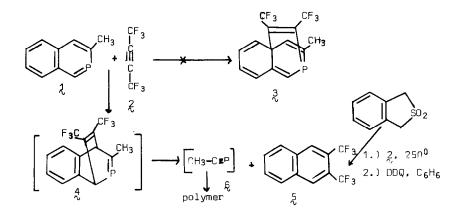
COMPOUNDS CONTAINING LOCALIZED CARBON-PHOSPHORUS DOUBLE BONDS I. DIELS-ALDER REACTION OF 3-METHYL-2-PHOSPHANAPHTHALENE WITH HEXAFLUOROBUTYNE-2.

Th.C. Klebach, L.A.M. Turkenburg and F. Bickelhaupt

Scheikundig Laboratorium der Vrije Universiteit, De Lairessestraat 174, Amsterdam-Z., The Netherlands.


(Received in UK 25 January 1978; accepted for publication 3 February 1978)

Elements of the second and higher rows of the periodic table do usually not form stable multiple bonds by $p\pi$ - $p\pi$ overlap¹. Stabilization of such bonds can be achieved by delocalization, as exemplified by an increasing number of phosphaaromatic systems². The first compound with an isolated phosphorus carbon multiple bond was phosphaacetylene, H-C=P, which polymerized even at -130^Q C³. More recently stable compounds have been prepared containing P=N⁴ or substituted P=C⁵ or As=C⁶ bonds, and also simple molecules containing the P=C bond and having a half life of several seconds have been obtained⁷.

With the intention of generating P=C bonds by a novel approach, we studied the Diels-Alder reaction between 3-methyl-2-phosphanaphthalene $(1)^8$ and hexafluorobutyne-2 (2). Whereas phosphabenzene and its derivatives yielded Diels-Alder adducts with the phosphorus atom as bridgehead⁹, this mode of reaction was highly improbable for 1, as it would lead to 3 in which both rings have lost their aromaticity. Rather, addition to position 1 and 4 was predicted to give 4, which contains an isolated P=C bond.

The reaction was performed both in the gas phase (evacuated ampoule, 50 min, 250° CJ and in solution (cyclohexane, $115-150^{\circ}$ C, 48 hours); besides tarry material, 2,3-bis(trisfluoromethyl)naphthalene (5) was isolated in about 30% yield. Apparently, 4 had undergone a retro Diels-Alder reaction to 5 splitting off the unstable 1-phosphapropyne (6), which polymerized under these reaction conditions. A similar course of reaction has recently been described for arsabenzenes by Ashe¹⁰. The structure of 5 (m.p. 81-82,5^o C; ¹H NMR (D₆-aceton) : ô (ppm), 8,72 (s.2H), 8,35 and 7,95 (d of d, 4H, J=3Hz); UV (cyclohexane), λ (nm), (log ϵ): 228 (3,32), 265 (3.25), 275 (3.25), 305 (2.62), 312 (2.54), 320 (2.69); C₁₂H₆F₆ :

calcd. C 54.56%, H 2.29%, m/e= 264.03871, found C 54.11%, H 2.79% m/e: 264.03876; mass spectrum m/e (%): 264 (100) $(5)^{+}$; 245 (19) $(5-F)^{+}$; 214 (19), $(5-CF_2)^{+}$, 195 (22), $(5-CF_3)^{+}$ was confirmed by an independent synthesis.

Apparently, $\frac{4}{3}$ is thermally too unstable to survive the conditions of its formation; experiments to intercept $\frac{4}{3}$ with cyclopentadiene or water were not fully conclusive so far.

References

- H.A. Staab, Einführung in die theoretische Organische Chemie, Weinheim, 1964, p.76.
- For reviews, see K. Dimroth, Fortschr. Chem. Forsch., <u>38</u>, 1 (1973);
 C. Jongsma and F. Bickelhaupt in Topics in Nonbenzoid Aromatic Chemistry, T. Nozoe, R. Breslow, K. Hafner, S. Ito and I. Murata, Ed., Hirowaka Publishing Co., Inc., Tokyo, 1977, p. 139.
- T.E. Gier, J. Amer. Chem. Soc., <u>63</u>, 1769 (1961); J.K. Tyler, J. Chem. Phys., <u>40</u>, 1170 (1964).
- E. Niecke and W. Flick, Angew. Chem., <u>85</u>, 586 (1973); D.J. Scherer and N. Kuhn, Angew. Chem., <u>86</u>, 899 (1974).
- 5. G. Becker, Z. anorg. allg. Chem., <u>423</u>, 242, (1976).
- 6. G. Becker and G. Gutekunst, Angew. Chem., 89, 477, (1977).
- M.J. Hapkinson, H.W. Kroto, J.F. Nixon, N.P.C. Simmons, J. Chem. Soc. Chem. Comm., <u>1976</u>, 513.
- 8. H.G. de Graaf and F. Bickelhaupt, Tetrahedron, 31, 1097 (1975).
- G. Märkl, Angew. Chem. <u>80</u>, 702, (1968); Tetrahedron Letters, <u>1974</u>, 4369.
- 10. A. Ashe and H. Friedman, Tetrahedron Letters, 1977, 1283.